质谱分析法是蛋白质研究领域和生物大分子研究领域中zui重要的分析技术。由于我们对蛋白质鉴定、定量和分析的要求越来越高,希望检测技术的灵敏度也越来越高,同时能够对更为复杂的样品进行分析处理,因此推动了质谱检测技术的发展,出现了一大批新兴的质谱分析方法和仪器。本文将对近几年质谱技术的发展以及质谱技术在蛋白质领域研究工作中的应用进行一个详细的介绍。 在生命科学研究工作中有一个重要问题,就是发现、鉴定蛋白质并弄清楚它们的一级结构。知道了蛋白质的氨基酸序列信息,我们就可以通过遗传密码将其与编码序列对应起来,从原则上来说,也就将细胞的生理学与遗传学起来了。发现、鉴定出了一个蛋白质就好像给我们打开了一扇窗,透过这个窗口,我们就能够对复杂的细胞调控网络有所了解。 在基因组学大步发展之前,我们就已经能够使用化学方法或酶学方法来鉴定蛋白质的一级结构了,不过当时只能对单一的、高度纯化的蛋白质进行分析。我们当时通常采用的方法都是检测紫外线吸光度(ultraviolet absorbance)或荧光光谱分析(fluorescentspectroscopy)的方法。比如用化学逐步降解法,即Edman法来鉴定时是从蛋白质多肽的N端逐步降解至C端,在降解的过程中通过检测紫外线吸光度的办法来辨认每一个被降解下来的氨基酸残基。不过在近20年里,有一种新方法——质谱检测法开始逐步进入到蛋白质鉴定领域。质谱法与化学法结合,为我们提供了更多有用的信息。随着质谱技术的进步,质谱法逐渐成为了蛋白质鉴定方面的方法。到了上世纪90年代中期,质谱检测法已经取代了Edman法,成为鉴定蛋白质一级结构的主流方法。 随着人类基因组项目的开展,大家对质谱技术的需求也变得越来越大。人类基因组项目让我们看到,我们可以对复杂的生物系统进行全面的高通量分析。而且人类基因组项目还向我们提供了大量的完整基因编码序列,这对于帮助我们大量、快速鉴定蛋白质序列来说意义重大。于是,继基因组项目之后,又迅速出现了蛋白质组学的概念,即对细胞或组织中的所有蛋白质进行系统研究。在蛋白质组学研究中,质谱技术同样是*的一项重要技术。 不过要对“所有的”蛋白质进行分析实在是一项非常棘手的任务。虽然我们的技术在不断进步,但到目前为止,我们还不可能对任何一个物种的“所有”蛋白质进行分析。该任务zui大的难点在于任何一个蛋白质组都非常复杂,而且我们对其复杂程度一无所知。我们所知道的是,任何一个物种蛋白质组组成单位(蛋白质)的数量都要远远超过其基因组中所有基因的数量。 这是因为,一个基因可以通过可变剪接的方式、序列多态性方式、翻译后修饰方式以及其它蛋白质处理机制等形成多个蛋白质。而且,这些数量众多的蛋白质各自的浓度差别也非常大,目前没有一款仪器或者方法能够对动态范围如此大的样本群体进行分析。比如我们曾预计血清蛋白质的浓度差别可能超过了10个数量级。虽然分析血清蛋白这个任务也非常困难,但是这还是推动了蛋白质及蛋白质组学分析技术的发展。本文将向您介绍几种质谱检测技术,它们在蛋白质分析领域的应用情况,并对它们在蛋白质组学研究工作中的价值进行讨论。 质谱检测仪以及它们的应用范围 长期以来,质谱技术只能用来分析一些耐热的小化合物,因为我们当时还无法有效地、温和地使样品离子化,也无法有效地在不导致样品断裂的前提下将离子化的样品从固态转变成气态。在上世纪80年代末诞生了两项技术进步,即电喷射离子化技术(electrospray ionization, ESI)和基质辅助激光解析离子化技术(matrix assisted laser desorption/ionization, MALDI)。这两项技术解决了生物大分子的离子化问题,它们的出现,极大地推动了质谱技术的发展,我们终于可以使用质谱技术来分析蛋白质组成问题了。随后又催生出了一大批新型的用于蛋白质和蛋白质组学研究领域的质谱检测仪,比如Q-Q-ToF质谱仪(Hybrid quadrupoletime-of-flight instrument)和ToF-ToF质谱仪(tandem time-of-flightinstrument)等(表1)。质谱仪不仅能够检测蛋白质多肽的分子量和氨基酸序列,还能发现蛋白质的结合位点以及翻译后修饰情况。在检测蛋白质多肽的分子量和氨基酸序列时,使用单级质谱仪(single-stage mass spectrometers)就足够了,而在发现蛋白质的结合位点以及翻译后修饰情况时除了进行单级质谱检测之外,还会选择特殊的离子通过碰撞对其进行裂解分析。在这种串联质谱(tandem mass spectrometry, MS/MS)检测试验中,我们可以通过对蛋白质裂解片段的分析获取详细的蛋白质结构信息。我们下面将要介绍的质谱仪都是在蛋白质研究中zui常用到的仪器。这些质谱仪之间在物理原理、性能指标、操作模式以及应用范围方面各有差异。 表1 各种常见质谱仪性能简介;表中√表示具有该功能,(√)表示可选该功能。+、++和+++分别表示可能或适度、好或很好、或非常;Seq表示连续的。 飞行时间质谱仪和hybrid ToF质谱仪 在ToF质谱仪中,我们可以通过某个离子飞越一段长度真空管道的时间推算出它的质荷比(mass-to-charge ratio)。现在,ToF质谱仪的性能已经得到了很大的提升,尤其是在分辨率和准确性方面进步zui为明显。现在,分辨力超过12,000已经是质谱仪的常规标准了。如果按照正确的操作规程,也可以达到百万分之一(ppm)级别的准确率。ToF质谱仪是进行ESI质谱和MALDI质谱检测的基础平台。Q-Q-ToF质谱仪在MS模式和MS/MS模式下就具有非常高的分辨率和准确率。在MS模式下,四级杆(quadrupole)起到了引导离子飞行的作用。而在MS/MS模式下,母离子(precursor ions),即在ESI过程中产生的离子被“挑选”出来,进入*对四级杆,而后在第二对四级杆中借助碰撞诱导解离作用(collision-induced dissociation)被裂解。然后,裂解离子产物经由ToF质谱仪进行分析处理。不论是*扫描模式(full-scan)还是MS/MS模式,得到的质谱图都具有很高的准确率和分辨率,这也就意味着能获得更多的肽段信息,发现单一同位素信号(mono-isotopic signal)的离子状态和指派(assignment)信息。所有这些信息都给蛋白质鉴定工作带来了极大的便利。有了上述这些信息,再与数据库中的数据进行比对,就能找出检测蛋白质样品的资料。Q-Q-ToF质谱仪在定量分析方面以及蛋白质翻译后修饰情况分析方面的能力也同样出色。 MALDI技术是另一项非常有用的待测蛋白质样品离子化技术,通常都会将MALDI技术与ESI技术相互补充使用。MALDI质谱仪灵敏度非常高,同时,对样品污染(比如,盐离子污染或少量去垢剂污染等)的要求没有ESI质谱仪那么苛刻。zui开始,MALDI技术是与ToF质谱仪联合使用用来检测蛋白质分子量的。后来又被应用到Q-Q-ToF质谱仪和ToF-ToF质谱仪上,这样才实现了真正的MS/MS检测。在单电荷(singlycharged)母离子的质谱图和ToF-ToF质谱仪得到的质谱图中都能发现高能量的碰撞裂解片段,这些片段都是蛋白质多肽肽键断裂和侧链断裂形成的,这些信号都很容易被解析。